
BINARY TREES

YOUR OBSERVATIONS (SO FAR DATA

STRUCTURES)

 Array

 Unordered

 Add, delete, search

 Ordered

 Linked List

 ??

INTRODUCTION TO TREE

 Fundamental data storage structures used in

programming.

 Combines advantages of an ordered array and a

linked list.

 Searching as fast as in ordered array.

 Insertion and deletion as fast as in linked list.

TREE (EXAMPLE)

node

Draw a parse tree

TREE CHARACTERISTICS

 Consists of nodes connected by edges.

 Nodes often represent entities (complex objects) such as
people, car parts etc.

 Edges between the nodes represent the way the nodes
are related.

 Its easy for a program to get from one node to another if
there is a line connecting them.

 The only way to get from node to node is to follow a path
along the edges.

TREE TERMINOLOGY

 Path: Traversal from node to node along the edges
results in a sequence called path.

 Root: Node at the top of the tree.

 Parent: Any node, except root has exactly one edge
running upward to another node. The node above it
is called parent.

 Child: Any node may have one or more lines
running downward to other nodes. Nodes below are
children.

 Leaf: A node that has no children.

 Subtree: Any node can be considered to be the root
of a subtree, which consists of its children and its
children’s children and so on.

TREE TERMINOLOGY

Visiting: A node is visited when program
control arrives at the node, usually for
processing.

Traversing: To traverse a tree means to visit
all the nodes in some specified order.

Levels: The level of a particular node refers
to how many generations the node is from
the root. Root is assumed to be level 0.

Keys: Key value is used to search for the
item or perform other operations on it.

B-TREE

BINARY TREES

 Every node in a binary tree
can have at most two
children.

 The two children of each
node are called the left child
and right child corresponding
to their positions.

 A node can have only a left
child or only a right child or it
can have no children at all.

 Left child is always less that
its parent, while right child is
greater than its parent.

APPLET

 ..\FinalApplets\Chap08\Tree\Tree.html

../FinalApplets/Chap08/Tree/Tree.html
../FinalApplets/Chap08/Tree/Tree.html
../FinalApplets/Chap08/Tree/Tree.html
../FinalApplets/Chap08/Tree/Tree.html
../FinalApplets/Chap08/Tree/Tree.html
../FinalApplets/Chap08/Tree/Tree.html
../FinalApplets/Chap08/Tree/Tree.html
../FinalApplets/Chap08/Tree/Tree.html
../FinalApplets/Chap08/Tree/Tree.html

UNBALANCED TREES

Some trees can be unbalanced.

They have most of their nodes on one side
of the root or the other. Individual subtrees
may also be unbalanced.

Trees become unbalanced because of the
order in which the data items are inserted.

 If the key values are inserted in ascending
or descending order the tree will be
unbalanced.

For search-centric application (Binary tree),
an unbalanced tree must be re-balanced.

IS A BINARY TREE ADT?

What are tree behaviors?

Do they look familiar to
other DS?

Implantation details?

Draw UML diagram for a B-
Tree?

REPRESENTING TREE IN JAVA

 Similar to Linked List but with 2 Links

 Store the nodes at unrelated locations in memory and

connect them using references in each node that point

to its children.

 Can also be represented as an array, with nodes in

specific positions stored in corresponding positions

in the array.

OBJECT WITH LINKS

Btree

Int data
Btree left_chid
Btree right_child

Find()
Insert()
Delete()

Btree

Int data
Btree left_chid
Btree right_child

Find()
Insert()
Delete()

Btree

Int data
Btree left_chid
Btree right_child

Find()
Insert()
Delete()

Btree

Int data
Btree left_chid
Btree right_child

Find()
Insert()
Delete()

ARRAY IMPLEMENTATION

TRAVERSING THE TREE

Visiting each node in a specified
order.

Three simple ways to traverse a
tree:

 Inorder

 Preorder

 Postorder

INORDER TRAVERSING

Inorder traversal will cause all the nodes to be visited in
ascending order.

 Steps involved in Inorder traversal (recursion) are:

1. -- Call itself to traverse the node’s left subtree

2. -- Visit the node (e.g. display a key)

3. -- Call itself to traverse the node’s right subtree.

inOrder(node lroot)

{

If (lroot != null) {

 inOrder(lroot.leftChild());

 System.out.print(lroot.iData + “ “);

 inOrder(lroot.rightChild());

}

TREE TRAVERSAL (CONTINUED)

Sequence of preorder traversal: e.g. use for
infix parse tree to generate prefix
-- Visit the node

-- Call itself to traverse the node’s left subtree

-- Call itself to traverse the node’s right subtree

Sequence of postorder traversal: e.g. use
for infix parse tree to generate postfix
-- Call itself to traverse the node’s left subtree

-- Call itself to traverse the node’s right subtree

-- Visit the node.

FINDING A NODE

To find a node given its key value, start from
the root.

 If the key value is same as the node, then
node is found.

 If key is greater than node, search the right
subtree, else search the left subtree.

Continue till the node is found or the entire
tree is traversed.

Time required to find a node depends on
how many levels down it is situated, i.e.
O(log N).

INSERTING A NODE

To insert a node we must first find the place

to insert it.

Follow the path from the root to the

appropriate node, which will be the parent of

the new node.

When this parent is found, the new node is

connected as its left or right child,

depending on whether the new node’s key

is less or greater than that of the parent.

What is the complexity?

FINDING MAXIMUM AND MINIMUM VALUES

 For the minimum,

 go to the left child of the root and keep going to the left

child until you come to a leaf node. This node is the

minimum.

 For the maximum,

 go to the right child of the root and keep going to the

right child until you come to a leaf node. This node is the

maximum.

DELETING A NODE

 Start by finding the node you want to delete.

 Then there are three cases to consider:

1. The node to be deleted is a leaf

2. The node to be deleted has one child

3. The node to be deleted has two children

DELETION CASES: LEAF NODE

 To delete a leaf node, simply change the

appropriate child field in the node’s parent to point

to null, instead of to the node.

 The node still exists, but is no longer a part of the

tree.

 Because of Java’s garbage collection feature, the

node need not be deleted explicitly.

DELETION: ONE CHILD

 The node to be deleted in this case has only two

connections: to its parent and to its only child.

 Connect the child of the node to the node’s parent,

thus cutting off the connection between the node

and its child, and between the node and its parent.

DELETION: TWO CHILDREN

DELETION: TWO CHILDREN

 To delete a node with two children, replace the
node with its inorder successor.

 For each node, the node with the next-highest key
(to the deleted node) in the subtree is called its
inorder successor.

 To find the successor,
 start with the original (deleted) node’s right child.

 Then go to this node’s left child and then to its left child
and so on, following down the path of left children.

 The last left child in this path is the successor of the
original node.

FIND SUCCESSOR

DELETE A NODE WITH SUBTREE (CASE 1)

DELETE A NODE WITH SUBTREE (CASE 2)

DELETE A NODE WITH SUBTREE (CASE 3)

B-TREE

EFFICIENCY

Assume number of nodes N and number of

levels L.

N = 2L -1

N+1 = 2L

L = log(N+1)

The time needed to carry out the common

tree operations is proportional to the base 2

log of N

O(log N) time is required for these

operations.

HUFFMAN CODE

 Binary tree is used to compress data.

 Data compression is used in many situations. E.g.
sending data over internet.

 Character Code: Each character in a normal
uncompressed text file is represented in the
computer by one byte or by two bytes.

 For text, the most common approach is to reduce
the number of bits that represent the most-used
characters.

 E.g. E is the most common letter, so few bits can be
used to encode it.

 No code can be the prefix of any other code.

 No space characters in binary message, only 0s
and 1s.

CREATING HUFFMAN TREE
 Make a Node object for each character used in the

message.

 Each node has two data items: the character and that
character’s frequency in the message.

 Make a tree object for each of these nodes.

 The node becomes the root of the tree.

 Insert these trees in a priority queue.

 They are ordered by frequency, with the smallest
frequency having the highest priority.

 Remove two trees from the priority queue, and make
them into children of a new node.

 The new node has frequency that is the sum of the
children’s frequencies.

 Insert this new three-node tree back into the priority
queue.

 Keep repeating these two steps, till only one tree is left in
the queue.

CODING THE MESSAGE

Create a code table listing the Huffman
code alongside each character.

The index of each cell would be the
numerical value of the character.

The contents of the cell would be the
Huffman code for the corresponding
character.

For each character in the original message,
use its code as an index into the code table.

Then repeatedly append the Huffman code
to the end of the coded message until its
complete.

CREATING HUFFMAN CODE

The process is like decoding a message.

Start at the root of the Huffman tree and
follow every possible path to a leaf node.

As we go along the path, remember the
sequence of left and right choices,
regarding a 0 for a left edge and a 1 for a
right edge.

When we arrive at the leaf node for a
character, the sequence of 0s and 1s is the
Huffman code for that character.

Put this code into the code table at the
appropriate index number.

